Ср. Апр 24th, 2024

Что такое BIM-технологии и как они облегчают строительство

By admin Апр 2, 2022

Что такое BIM-технологии

Информационное моделирование зданий (Building Information Modeling) – это создание интеллектуальных 3D-моделей. С помощью BIM-технологий специалисты по архитектуре и строительству могут не только точнее планировать, проектировать и строить, но и эффективнее эксплуатировать здания и объекты инфраструктуры.

Что такое BIM-технологии и как они облегчают строительство

В чем ключевое отличие от обычных трехмерных моделей? BIM-модели содержат не только графику, но и полную информацию о характеристиках конструкций, инженерных систем и всего оборудования. Это полноценный цифровой двойник объекта, где прописана каждая деталь. К тому же, разные специалисты могут одновременно работать с одной и той же BIM-моделью. Нет необходимости иметь разные чертежи, а потом их совмещать. Это серьезно сокращает количество ошибок в проекте.

Применение BIM-технологии в мире

Появление информационного моделирования в корне изменило способ взаимодействия между архитекторами, инженерами и другими специалистами в строительной области. Полная информация о проекте — материалы, технологии, их стоимость, а также дизайн, логистика, обслуживание объекта во время возведения, после введения в эксплуатацию — доступна каждому участнику благодаря BIM и облачным технологиям.

BIM только начинает свое стремительное развитие и востребованность, только самые богатые страны активно используют информационное моделирование последнее десятилетие.

Великобритания

Великобритания до сих пор не просто первая, но и абсолютный лидер по применению  BIM. Это стало возможным благодаря поддержке на уровне государства: с 2016 года все бюджетные стройпроекты обязаны применять BIM 2 уровня, не ниже. Так, в качестве пробной реализации, технологию используют для проекта Министерства Юстиции — расширение тюрьмы Кукхэм Вуд в Кенте. И это позволило существенно сократить капитальные затраты и сроки реализации.

США

В США в Управлении общих служб составила программу BIM для всех проектов по обслуживанию общественных зданий с 2003 года.

Сегодня в США около 72% строительных фирм используют BIM для значительной экономии средств на проектах. Ряд американских штатов, университетов и частных организаций также применяют стандарты BIM. Так, штат Висконсин сделал обязательным применение BIM для госпроектов, если их общий бюджет начинается от  $5 млн

Франция

Во Франции уже полмиллиона домов, которые спроектированные с использованием BIM. С 2017 года правительство страны задействовало BIM в жилищном секторе на 500 000 домов.

Рабочая группа Le Plan Transition Numérique dans le Bâtiment отвечает за французскую стратегию BIM, цель которой обеспечить экологичность и снизить затраты.

Германия

В Германии также правительство влияет на продвижение технологии BIM. Акцент делается больше на коммерческие и жилые здания, чтобы к 2020 году внедрить BIM во все инфраструктурные проекты.

Испания

В Испании BIM применяется для проектов государственного сектора с 2018 года, а с 2019 — обязательное использование технологии в  инфраструктурных проектах.

Была создана отдельная Комиссия для содействия по внедрению BIM в строительный сектор Испании.

Финляндия

Скандинавские страны одни из первых, кто начал использовать BIM. Например, Финляндия начала применять информационное моделирование зданий еще в 2002 году. BIM использовался для создания сложных инфраструктур, таких как линия метро Хельсинки.

Китай

Китайские специалисты Комиссии по атомной энергетике и несколько организаций интегрировали высокий уровень политики внедрения BIM для оцифровки и распространения технологии. BIM стал ключевым элементом и используется в большинстве их проектов. Правительство Китая еще не ввели обязательное использование BIM в строительстве, однако использование приветствуется.

В целом же, BIM даже в экономически сильных странах работает в экспериментальной форме — процесс внедрения цифровых технологий в строительстве не быстрый по ряду причин. Однако все равно прослеживается ускорение в цифровизации отрасли и большая заинтересованность застройщиков в современных долгосрочных решений, таких как строительное информационное моделирование.

Этапы работы с BIM-моделями

1 этап. Сначала создают архитектурную 3D-модель здания со всеми необходимыми планами, видами и разрезами, необходимыми для раздела архитектурных решений.

2 этап. На основе архитектурной модели, конструкторы и смежники создают свои модели, которые просчитывают на все возможные нагрузки. На основе моделей они делают чертежи и расчет спецификаций.

Что такое BIM-технологии и как они облегчают строительство

3 этап. На основе собранной BIM-модели происходит сверка архитектурных и конструктных решений с моделями смежных разделов на предмет несостыковок. На этом этапе происходит проверка BIM-модели на ошибки, которые потом исправляются.

4 этап. На основе готовой BIM-модели специалисты разрабатывают проект организации строительства (ПОС) и проект производства работ (ППР). Программа автоматически составляет календарный график для их реализации, добавляются логистические данные о том, какие материалы и в какие сроки должны быть доставлены на объект.

5 этап. Уже после возведения здания информационную модель можно использовать для эксплуатации объекта при помощи датчиков. Под контролем оказываются все режимы инженерных коммуникаций и возможные аварийные ситуации.

Что такое BIM-технологии и как они облегчают строительство

Преимущества БИМ-технологий в строительстве

Проект всегда под рукой. 3D-визуализация при проектировании позволяет судить о состоянии объекта инвесторам, подрядчикам, будущим жильцам и проверяющим органам. Модель становится централизованным хранилищем всех необходимых данных о здании. Она позволяет быстро и эффективно вносить изменения в проект, отслеживая результат во всех связанных между собой проекциях.

Быстрая подготовка документов по проекту. По оценке Минстроя, BIM-технологии примерно на 40 % снижают вероятность ошибок и погрешностей в проектной документации по сравнению с традиционными методами проектирования.

Меньше вероятность ошибок. BIM-технологии позволяют выявить возможные недостатки в инженерных системах и коммуникациях еще в момент проектирования, а не в процессе строительства или сдачи объекта.

Что такое BIM-технологии и как они облегчают строительство

Снижаются денежные расходы. Низкая вероятность ошибок позволяет избежать непредвиденных трат. К тому же, оценивая весь проект целиком еще до возведения, можно выбрать оптимальные по соотношению цены и качества материалы. Срок ввода здания в эксплуатацию тоже снижается.

Здание легко сдать в аренду или продать на более выгодных условиях. Намного легче, чем объект, построенный с применением традиционных методов и технологий. Объясняется это тем, что использовать здание с готовой эксплуатационной BIM-моделью гораздо проще и эффективнее.

Информационное моделирование выводит строительство объектов на новый технологический уровень. BIM-технологии позволяют экономить бюджет, оперативно выявлять ошибки и вносить изменения в проект. Сегодня формируется будущее проектной и строительной отрасли. Поэтому, если ваша организация хочет быть его частью, необходимо как можно скорее включаться в освоение новых инструментов.

Рынок BIM: ограничения и возможности для компаний

На сегодняшний день в России уровень развития рынка BIM достаточно низкий: объем рынка оценивается в 67—77 млн. долл., что составляет около 1,5% от мирового рынка, и всего 5—7% компаний использует BIM в основном в крупных городах и для реализации мегапроектов. Для сравнения, в Великобритании применение технологии возросло с 10% в 2011 г. до 70% в 2019 г.

Основными причинами, осложняющими применение BIM, являются отсутствие четкого понимания технологии в целом и экономического эффекта ее внедрения, высокие первоначальные вложения на закупку ПО, найм или обучение специалистов, а также необходимость перестройки внутренних процессов и дальнейшая адаптация к новой схеме работы.

Однако внедрение BIM-системы позволяет сократить временные и финансовые затраты за счет автоматизации рутинных операций в типовых проектах, а в нетиповых — минимизировать возможность потенциальной ошибки, которая может привести к значительным потерям на стадии строительства или эксплуатации.

Эффекты от внедрения BIM оцениваются по стадиям жизненного цикла проекта: срок проектирования уменьшается на 33%, сокращение ошибок при проектировании и погрешностей в проектной документации составляет около 10%, снижение затрат — в среднем 2%. Общий экономический эффект достигается суммарно на всех этапах развития объекта недвижимости.

Сокращение затрат происходит за счет снижения материалоемкости, более точного подбора оборудования и ресурсов, уменьшения дополнительного объема работ. Это достигается благодаря более качественной, полной и согласованной документации, доступности информации, единой базы данных и процессов.

Перспективы развития технологии

В краткосрочной перспективе применения BIM ожидается уменьшение в моделях dark data, то есть данных, которые не могут быть обработаны и эффективно использованы. Также предполагается более активное использование облачных технологий в т.ч. для создания цифровых двойников объектов недвижимости, которые синхронизируются с физическими и с инженерно—техническими данными. Их внедрение рекомендуют начинать постепенно: с использования на более низких уровнях и под конкретные задачи к полноценной цифровизации процессов.

Кроме того, ожидается расширение применения BIM на этапе эксплуатации, то есть объединение ряда систем: базы данных (исполнительные чертежи, BIM—модель, документация), FM (Facility Management – регламенты, периодичность обслуживания, «сервис—деск»), BMS (Building Management System – интеграция 3—мерной модели и показаний датчиков).

В долгосрочном периоде в качестве основных направлений развития BIM-технологии выступает масштабирование, то есть переход от использования на отдельных проектах к формированию моделей городов, содержащих данные о зданиях. Также важным этапом станет переход на следующий уровень интеграции, который позволит осуществлять управление и контроль проекта заинтересованными сторонами с помощью единой модели по принципу открытого взаимодействия.

В целом, процесс диджиталиции необратим, а значит внедрение BIM становится не дополнительным конкурентным преимуществом, а базой для успешной работы компаний, что означает постепенный полный переход к системе управления объектами капитального строительства на основе данных BIM. По различным оценкам, средний ежегодный темп роста рынка прогнозируется на уровне 14%, что означает, что к 2023 г. можно ожидать увеличения объема российского рынка более, чем на 50%.

Как функционирует BIM: этапы от проектирования и до стройки и эксплуатации

Работа с BIM-моделью проводится в несколько этапов:

  1. Проектирование. Для начала создается 3D-модель постройки с планами, разрезами, видами. При помощи специального конструктора, данная модель вносится в программу, которая рассчитывает параметры всех элементов строительного объекта. Обширная база данных позволяет получить все рабочие чертежи, спецификацию, информацию об объеме будущих работ, планируемых затратах. На стадии проектирования также производится расчет инженерных и энергетических сетей, тепловые потери и уровень естественного освещения с учетом характеристики местности, рельефа, грунта и т.д. Начальная информационная модель здания дополняется логистическими данными, определяющими сроки доставки материалов, наиболее выгодные варианты доставки. BIM-моделирование позволяет также планировать социальную инфраструктуру и транспортную сеть в районе застройки. На завершающем этапе проектирования составляется детальный план работ и график их выполнения, определяется необходимое количество техники и ресурсов для выполнения работ.
  2. Строительство. На данном этапе BIM-проектирование позволяет отследить состояние и ход выполнения работ. С его помощью возможно контролировать расходы средств и то, насколько реализовывается заложенный бюджет. BIM предоставляет информацию обо всех управленческих решениях и изменениях в строительстве в реальном времени.
  3. Эксплуатация. После завершения строительства при помощи датчиков информационная модель может продолжить собирать нужные данные о здании, контролируя его функциональность и предсказывая потенциальные аварийные ситуации. Используя BIM, можно вести учет оборудования, контролировать гарантийные обязательства, а также расход ресурсов. Возможна интеграция с BMS-системой объекта. Более того, BIM-моделирование может быть полезно и для управления недвижимостью: данная модель позволяет вести учет аренды, сдачи помещений, плановых ремонтных работ, взаимодействий с различными инстанциями. Оценка управления, технический аудит, разработка плана развития строительного объекта — это и не только возможно при помощи BIM-проектирования.

Как используется BIM в строительстве

Кроме проектной визуализации и архитектурно-конструкторского этапа проработки с учетом множества составляющих, BIM-технология решает и технологические, и экономические задачи в будущем рабочем проекте. С ее помощью просчитывается точная смета задолго до старта реального строительства на выбранные материалы, их доставку, доставку готовых конструкций или модульных частей, а также затраты на рабочую силу или роботизированные процессы.

Такие просчеты и наглядные сметы дают архитекторам сделать объективный выбор, учитывая бюджет и цели объекта, и искать альтернативы, чтобы снизить затраты. Это может касаться как и времени закупки материалов, так и выбора экономичных материалов, а также выбора в пользу собранных готовых конструкций или наоборот, 3D- печати на месте. Можно просчитать выгоду применения человекочасов или роботизированных механизмов, применение дронов. Все задуманное в проекте благодаря оцифрованным данным и программам, умеющим анализировать и подбирать нужное согласно алгоритмам, можно увидеть в четких расчетах и, самое главное, в трехмерной модели, которая «подвижна» и меняется в зависимости от выбора тех или иных компонентов.

Оптимизация затрат и времени — одно из главных достоинств применения BIM-технологии. В конечном счете, чем быстрее завершится строительство, тем дешевле оно будет. Любые ошибки или просчеты приводят к продлению процесса, а значит, увеличению расходов. А применяя BIM на этапах строительства и эксплуатации —  самые расходные этапы — можно существенно снижать затраты. А чем скорее объект будет сдан в эксплуатацию, тем быстрее начнется окупаемость инвестиций.

BIM в эксплуатации

BIM-проектирование может также быть полезно в процессе эксплуатации строительного объекта. Во многих развитых странах применение технологии BIM к существующим зданиям и сооружениям становится приоритетом. Преимуществом использования BIM в эксплуатации является возможность:

  • Применять изменения к существующей конструкции объекта
  • Переоснащать строительный объект новым оборудованием, которое поможет улучшить качество эксплуатации
  • Следить за состоянием строительных объектов и предпринимать меры в случае необходимости реставрации или ремонта
  • Наладить максимально грамотную эксплуатацию здания с технологической и экономической точки зрения

BIM в зеленом строительстве

Green BIM – это использование технологии BIM в зеленом строительстве для анализа климатических условий, моделирования инженерных систем, оценки жизненного цикла здания и его оптимального с экономической и экологической точки зрения функционирования. Так, в частности, Green BIM помогает определить оптимальную ориентацию строительного объекта по отношению к сторонам света, анализирует освещенность, возможность использования солнечных батарей и ветрогенераторов, уровень потребления воды, создание и контроль инженерных систем, которые смогут обеспечить максимальный комфорт. Green BIM позволяет спроектировать максимально идеальный проект, что позволяет снизить затраты и время на реализацию.

Многие крупные заказчики в России начинают работать по технологии Green BIM, ведь используя данный подход, у заказчика увеличиваются шансы на получение зеленого сертификата (LEED, BREEAM, DGNB), что является мощным конкурентным преимуществом на рынке.

Инструменты сборки единой информационной модели —  описание OpenBIM

OpenBIM — это современная концепция взаимодействия, которая доступна для всех работников АИС отрасли, а также разработчиков ПО. Она призвана сделать сотрудничество профессионалов открытым, понятным и не зависящим от платформы Часто в процессе проектирования строительного объекта задействованы различные специалисты, работающие с разными инструментами и программами. Открытые форматы – наиболее эффективный способ взаимодействия друг с другом. Они позволяют передавать информацию, независимо от того, каким ПО пользуются специалисты. Самый распространенный открытый формат — это  IFC, позволяющий передавать информацию без ограничений и потерь. OpenBIM позволяет:

  • Использовать в работе персональный набор программ и инструментов, который лучшим образом решает поставленные задачи.
  • Вместо необходимости настраивать сложный универсальный BIM-файл, с OpenBIM менеджеры проектов могут работать с отдельными моделями, созданными в разных программах, контролируя таким образом отдельные части проекта.
  • Взаимодействовать без потери данных
  • Использовать данные информационной модели на всем жизненном цикле здания.

БИМ технологии проектирования в строительстве: что это такое и как они работают

Все современные архитектурные планы создаются на компьютере. Специфика метода, в том, что специалист работает не с геометрическими образами, а с цифровой моделью. Она создается в два этапа:

  1. Первичный. На этой стадии учитываются все элементы, которые закупаются вне строительной площадки. Это материалы, двери, окна, внутренняя отделка, отопительное и водопроводное оборудование, лифты.
  2. Вторичный. На этом моменте рассчитывается, как будет возводиться фасад, стены, какая будет крыша, сколько будет балконов. Предполагается использование всех деталей, указанных на первом этапе.

Это деление условно. Вы приобретаете партию входных железных дверей у одной фирмы. Она оказывается бракованной: краска слезла до того, как рабочие успели их поставить, половина замков не работает. Вы возвращаете никуда не годный товар и покупаете у другого производителя качественный, но дороже. Во второй этап вклинивается первый, но это не значит, что придется разрабатывать проект сначала. Все совершенные вами действия отражаются в расходных сметах и официальной документации. Внешний вид дома также изменится. У здания будут те двери, которые вы выбрали во второй раз.

Информационная модель будет существовать до тех пор, пока есть объекты, которые она воспроизводит. Она трансформируется и модернизируется вместе с сооружениями, поэтому иногда её называют 4D. К пространственным характеристикам добавляется временная.

Преимущества BIM проектировщиков

Чем не является БИМ модель

Это сложное, многокомпонентное понятие. Чтобы его специфика стала более понятной, соберем несколько распространенных заблуждений и попытаемся их развеять.

BIM проект не будет:

  • Макетом частей отдельного сооружения или обособленным компьютерным документом. Это связанный и взаимодействующий на уровне параметров каждого из BIM-объектов проект, который полностью согласуется и выполняется по утвержденным стандартам министерств и комитетов с привлечением квалифицированных BIM-менеджеров, освоивших дисциплину BIM управление проектом.
  • Гарантией безошибочной работы. Проект разрабатывают люди. Они могут просчитаться, забыть что-то, упустить из вида. БИМ поможет избежать большинства оплошностей, но не заменит компетентных, опытных сотрудников.
  • Только 3D. Графическая составляющая важная, но не единственная часть. Информационная модель включает в себя всю документацию, таблицы, графики, товарные чеки, расходные сметы, списки закупок. Строители могут обойтись без трехмерного изображения, если для выполнения заказа оно не требуется.

ПО для создания BIM не будет:

  • Роботом, чей интеллект равен человеческому. Информационная система покажет, где были допущены ошибки, но исправлять их будут специалисты. Вы узнаете, что дом получится недостаточно теплым, но варианты решения проблемы будете искать самостоятельно. Вы можете заказать утеплитель, добавить батареи, проконопатить чердак или сделать пол с подогревом. Программа просчитает стоимость каждого варианта, но не сделает выбор за вас.
  • Конкретной компьютерной программой. Это инновационный метод проектирования. Он реализует себя через комплексное ПО. Как правило, одно приложение не способно обеспечить такого масштаба, который требуется для постройки здания. Это комплекс разнообразных модулей или программ, слаженная работа которых обеспечивает создание инновационных архитектурных проектов. Представление о BIM системе, как о чем-то замкнутом и односложном, устарело и не соответствует действительности. Компания ZWSOFT предлагает приобрести пакет инструментов для конкретных специальностей (проектировщик промышленных объектов, жилых зданий, сооружений) и дополнительные плагины для отраслевых и узкоспециальных задач. Пользователи считают, что продукция компании ZWSOFT – российский аналог Autocad. Она не уступает зарубежным вариантам по качеству, но ниже по стоимости.
  • Замкнутой системой. Разработчики постоянно совершенствуют BIM, следят, чтобы он соответствовал последним требованиям мирового архитектурно-строительного проектирования.
  • Полностью автоматическим. Технология не может собирать данные, её задача – их обработка. Чтобы создать проект, инженер вбивает всю необходимую информацию в базу.
  • Программированием. БИМ не подразумевает вбивания кодов. План будущего здания разрабатывается согласно общепринятой логике, в том числе в интерактивном режиме и с помощью графических средств. Заменой профессионала. Например, если у архитектора, конструктора или специалиста по инженерным сетям нет таланта, ему не поможет ни одна технология.

Практическая польза от информационной модели здания

Однако терминология – это не главное. Применение информационной модели здания существенно облегчает работу с объектом и имеет массу преимуществ перед прежними формами проектирования.

Прежде всего, оно позволяет в виртуальном режиме собрать воедино, подобрать по предназначению, рассчитать, состыковать и согласовать создаваемые разными специалистами и организациями компоненты и системы будущего сооружения, «на кончике пера» заранее проверить их жизнеспособность, функциональную пригодность и эксплуатационные качества, а также избежать самого неприятного для проектировщиков — внутренних нестыковок (коллизий) (рис.2).


Рис. 2. Проект нового здания высшей музыкальной школы New World Symphony в Майами (США) архитектора Фрэнка Гери, разработанный по технологии BIM (начало проектирования в 2006). Отдельно показаны компоненты единой модели: внешняя оболочка здания, несущий каркас, комплекс инженерного оборудования и внутренняя организация помещений.

В отличие от традиционных систем компьютерного проектирования, создающих геометрические образы, результатом информационного моделирования здания обычно является объектно-ориентированная цифровая модель как всего объекта, так и процесса его строительства.

Чаще всего работа по созданию информационной модели здания ведется как бы в два этапа.

Сначала разрабатываются некие блоки (семейства) – первичные элементы проектирования, соответствующие как строительным изделиям (окна, двери, плиты перекрытий и т.п.), так и элементам оснащения (отопительные и осветительные приборы, лифты и т.п.) и многому другому, что имеет непосредственное отношение к зданию, но производится вне рамок стройплощадки и при возведении объекта не делится на части.

Второй этап – моделирование того, что создается на стройплощадке. Это фундаменты, стены, крыши, навесные фасады и многое другое. При этом предполагается широкое использование заранее созданных элементов, например, крепежных или обрамляющих деталей при формировании навесных стен здания.

Таким образом, логика информационного моделирования зданий, вопреки опасениям некоторых скептиков, ушла из непонятной для проектировщиков и строителей области программирования и соответствует обычному пониманию, как строить дом, как его оснащать и как в нем жить.

Это существенно облегчает и упрощает работу с BIM как проектировщикам, так и всем остальным категориям строителей, а затем и эксплуатантов.

Что касается деления на этапы (первый и второй) при создании BIM, то оно носит достаточно условный характер – вы можете, например, вставить окна в моделируемый объект, а затем, по вновь появившимся соображениям, поменять их, и в проекте будут задействованы уже измененные окна.

Построенная специалистами информационная модель проектируемого объекта затем становится основой и активно используется для создания рабочей документации всех видов, разработки и изготовления строительных конструкций и деталей, комплектации объекта, заказа и монтажа технологического оборудования, экономических расчетов, организации возведения самого здания, а также решения технических и организационно-хозяйственных вопросов последующей эксплуатации (рис.3).


Рис. 3. Строительство нового здания американской высшей музыкальной школы New World Symphony (начато в 2008) и его будущий внешний вид (окончание строительства планируется в 2010). Здание площадью 10 000 кв. м, зал рассчитан на 700 зрителей, приспособлен для проведения веб-трансляций и записи концертов, а также — видеопроекций на 360 градусов, на верхнем этаже расположены музыкальная библиотека, дирижерская студия, а также 26 индивидуальных репетиционных аудиторий и шесть – для совместных репетиций нескольких музыкантов. Сметная стоимость объекта 200 млн. долларов.

Информационная модель существует в течение всего жизненного цикла здания, и даже дольше. Содержащаяся в ней информация может изменяться, дополняться, заменяться, отражая текущее состояние здания.

Такой подход в проектировании, когда объект рассматривается не только в пространстве, но и во времени, то есть «3D плюс время», часто называют 4D, а «4D плюс информацию» принято обозначать уже 5D. Хотя, с другой стороны, в ряде публикаций под 4D могут понимать «3D плюс спецификации».

Как видим, полного единства в этих модных количествах D пока еще тоже нет, но это всего лишь вопрос времени. Главное – внутреннее содержание новой концепции проектирования.

Технология BIM уже сейчас показала возможность достижения высокой скорости, объема и качества строительства, а также значительную экономию бюджетных средств.

Например, при создании сложнейшего по форме и внутреннему оснащению нового корпуса Музея искусств в американском городе Денвере для организации взаимодействия субподрядчиков при проектировании и возведении каркаса здания (металл и железобетон) и разработке и монтаже сантехнических и электрических систем была использована специально разработанная для этого объекта информационная модель.

По данным генерального подрядчика, только чисто организационное применение BIM (модель была создана для отработки взаимодействия субподрядчиков и оптимизации графика работ) сократило срок строительства на 14 месяцев и привело к экономии примерно 400 тысяч долларов при сметной стоимости объекта в 70 миллионов долларов (рис.4).


Рис. 4. Музей искусств в Денвере (США), корпус Фредерика С.Хэмилтона. Архитектор Дэниель Либескинд, 2006.

Но одно из самых главных достижений BIM – возможность добиться практически полного соответствия эксплуатационных характеристик нового здания требованиям заказчика.

Поскольку технология BIM позволяет с высокой степенью достоверности воссоздать сам объект со всеми конструкциями, материалами, инженерным оснащением и протекающими в нем процессами и отладить на виртуальной модели основные проектные решения.

Иными способами такая проверка проектных решений на правильность не осуществима – придется просто построить макет здания в натуральную величину. Что в прежние времена периодически и происходило (да и сейчас еще происходит) – правильность проектных расчетов проверялась на уже созданном объекте, когда исправить что-либо было почти невозможно.

При этом особо важно подчеркнуть, что информационная модель здания — это виртуальная модель, результат применения компьютерных технологий. В идеале BIM – это виртуальная копия здания. На начальном этапе создания модели мы имеем некоторый набор информации, почти всегда неполный, но достаточный для начала работы в первом приближении. Затем введенная в модель информация пополняется по мере ее поступления, и модель становится более насыщенной.

Таким образом, процесс создания BIM всегда растянут во времени (носит практически непрерывный характер), поскольку может иметь неограниченное количество «уточнений».

А сама информационная модель здания – весьма динамичное и постоянно развивающееся образование, «живущее» самостоятельной жизнью.

При этом надо понимать, что физически BIM существует только в памяти компьютера. И ею можно воспользоваться только посредством тех программных средств (комплекса программ), в которых она и была создана.

BIM и обмен информацией

Результатом развития компьютерного проектирования является то обстоятельство, что на сегодняшний день работа на основе CAD-технологий представляется достаточно организованной и отлаженной.

Сейчас, спустя примерно 25 лет после своего появления, формат файлов DWG, создаваемых пакетом AutoCAD, занял место неофициального, но общепризнанного стандарта работы с проектом в CAD-программах и уже начал жить независимой от своего создателя жизнью.

То же относится и к формату DXF, разработанному Autodesk для осуществления обмена данными между различными CAD-программами и другими, в том числе вычислительными, комплексами.

Теперь практически все CAD-программы могут принимать и сохранять информацию в этих форматах, хотя их собственные «родные» форматы файлов порой существенно отличаются от последних.

Таким образом, еще раз констатируем, что форматы файлов, создаваемых пакетом AutoCAD, стали неким «унификатором» информации для CAD-программ, причем это случилось не по команде сверху или решению некоего общего собрания разработчиков программного обеспечения, а исторически определилось самой логикой естественного развития автоматизированного проектирования в мире.

Что касается BIM, то в наши дни форма, содержание и способы работы по информационному моделированию зданий всецело определяются используемым архитекторами (проектировщиками) программным обеспечением, которого сейчас для BIM уже немало.

Поскольку повсеместное внедрение технологии BIM в мировую проектную практику в настоящее время находится (по историческим меркам) на своей начальной стадии, еще не выработан единый стандарт для файлов программных систем, создающих информационные модели зданий, или обмена данными между ними, хотя такое понимание назревает и попытки разработки единых «правил игры» уже предпринимаются.

Думается, должно пройти еще какое-то время, чтобы мировое сообщество проектировщиков выработало общепризнанные «шаблоны» для BIM, унифицирующие правила передачи, хранения и использования информации.

Возможно, решение этого вопроса будет найдено по аналогии с CAD-системами, когда один из BIM-комплексов в явочном порядке станет наиболее популярным.

К сожалению, по указанной только что причине отсутствия единого стандарта перенос информационной модели с одной программной платформы на другую без потери данных и существенных переделок (часто почти все надо повторить заново) пока невозможен.

Так что работающие сегодня в BIM архитекторы, строители, смежники и другие специалисты существенно зависят от правильного выбора используемого программного обеспечения, особенно на начальном этапе своей деятельности, поскольку в дальнейшем они будут к нему прочно привязаны, фактически станут его «заложниками».

Конечно, такое положение дел не способствует развитию информационного моделирования зданий. Проектировщики, перешедшие на технологию BIM, всецело зависят от уровня развития информационных технологий, уровня понимания проблемы и мастерства создателей компьютерных программ. Они ограничены в своей профессиональной деятельности теми рамками, которые им предоставляют программисты. Это плохо, но ничего другого пока нет.

С другой стороны, в машиностроении, например, уровень развития авиации напрямую зависит от уровня развития станкостроения. И это не мешает прогрессу. Если все правильно координировать в масштабе целых отраслей. Даже наоборот, потребности авиации во многом стимулируют развитие станкостроения.

Напрашивается парадоксальный вывод – дальнейшее развитие архитектурно-строительного проектирования будет зависеть от уровня развития программирования. Возможно, это не всем понравится, но это уже реальность.

Как и то обстоятельство, что задачи, возникающие в проектировании, стимулируют развитие информационных технологий. Все взаимосвязано.

Формы получения информации из модели

Информационная модель здания сегодня – это специальным образом организованный и структурированный набор данных из одного или нескольких файлов, допускающий на выходе как графическое, так и любое иное числовое представление, пригодное для последующего использования различными программными средствами проектирования, расчета и анализа здания и всех входящих в него компонентов и систем.

Сама информационная модель здания как организованный набор данных об объекте непосредственно используется создавшей ее программой. Но специалистам важно также иметь возможность брать информацию из модели в удобном виде и широко использовать в своей профессиональной деятельности вне рамок конкретной BIM-программы.

Отсюда возникает еще одна из важных задач информационного моделирования – предоставлять пользователю данные об объекте в широком спектре форматов, технологически пригодных для дальнейшей обработки компьютерными или иными средствами.

Поэтому современные BIM-программы предполагают, что содержащуюся в модели информацию о здании для внешнего использования можно получать в большом спектре видов, минимальный перечень которых на сегодняшний день уже достаточно четко определен профессиональным сообществом и не вызывает никаких дискуссий (рис.5).


Рис. 5. Виды графического представления информационной модели здания. Татьяна Козлова. Памятник архитектуры «Дом композиторов» в Новосибирске. Модель выполнена в Revit Architecture. НГАСУ(Сибстрин), 2009.

К таким общепризнанным формам вывода или передачи содержащейся в BIM информации о здании прежде всего относятся:

  1. чертежная 2D рабочая документация и чертежные 3D-виды моделей;
  2. плоские 2D файлы и объемные 3D модели для использования в различных CAD-программах;
  3. таблицы, ведомости, спецификации;
  4. файлы для использования в Интернет;
  5. файлы с инженерными заданиями на изготовление входящих в модель изделий и конструкций;
  6. файлы-заказы на поставку оборудования и материалов;
  7. результаты тех или иных специальных расчетов;
  8. видеоматериалы, отражающие моделируемые процессы;
  9. файлы с данными для расчетов в других программах;
  10. файлы презентационной визуализации и анимации модели (рис.6),
    Рис. 6. Елена Коваленко. Проект Центра современного искусства. Дипломная работа. Модель выполнена в Revit Architecture. НГАСУ(Сибстрин), 2009.
  11. виды объемных разрезов и других полных или не полных фрагментов проектируемого здания (рис.7);
  12. файлы для трехмерной печати;
  13. данные для изготовления модели или ее частей на станках с ЧПУ, лазерных или механических резаках либо других подобных устройствах;
  14. любые другие виды предоставления информации, которые потребуются при проектировании, строительстве или эксплуатации здания.

Все это многообразие форм выводимой информации обеспечивает универсальность и эффективность BIM как нового подхода в проектировании зданий и гарантирует ему определяющее положение в архитектурно-строительной отрасли в ближайшем будущем.


Рис. 7. Татьяна Козлова. Памятник архитектуры «Дом композиторов» в Новосибирске: трехмерный разрез здания. Модель выполнена в Revit Architecture. НГАСУ(Сибстрин), 2009.

Опровержение основных заблуждений о BIM

Для лучшего понимания сущности информационного моделирования зданий полезно будет также уточнить, чего BIM не может и чем не является.

BIM не является единичной моделью здания или единичной базой данных. Обычно это – целый взаимосвязанный и сложноподчиненный комплекс таких моделей и баз данных, вырабатываемых различными программами и взаимосвязанных с помощью этих же программ. А восприятие BIM как односложной модели – одно из ранних и наиболее распространенных заблуждений.

BIM не является «искусственным интеллектом». Например, собранная в модели информация о здании может анализироваться на предмет обнаружения в проекте возможных нестыковок и коллизий. Но способы устранения этих противоречий находятся всецело в руках человека, поскольку сама логика проектирования еще не поддается математическому описанию.

Например, если вы в модели уменьшите количество утеплителя на здании, то BIM-программа не будет думать за вас, как поступить: то ли добавить (закупить) еще утеплителя, то ли уменьшить площадь помещений, то ли усилить систему отопления, то ли перенести здание на новое место с более теплым климатом и т.п. Это проектировщик должен решать сам.

Почти наверняка в будущем компьютерные программы начнут постепенно заменять человека и в наиболее простых (рутинных) интеллектуальных операциях в проектировании, как сейчас уже заменяют в черчении, но пока в реальной практике об этом говорить рано. Когда это произойдет, справедливо будет утверждать о начале нового этапа развития проектирования.

BIM не идеальна. Поскольку она создана людьми и получает от людей информацию, а людям свойственно ошибаться, в все равно будут встречаться ошибки. Эти ошибки могут появляться непосредственно при внесении данных, при создании BIM-программ, даже при работе компьютеров. Но этих ошибок возникает принципиально меньше, чем в случае, когда человек сам манипулирует информацией. И гораздо больше внутренних уровней программного контроля корректности данных. Так что сегодня BIM — это лучшее из того, что есть.

BIM – это не конкретная компьютерная программа. Это – новая технология проектирования. А компьютерные программы (Revit, Digital Project, Bently Architecture, Allplan, ArchiCAD и т.п.) – это лишь инструменты ее реализации, которые постоянно развиваются и совершенствуются. Но эти компьютерные программы определяют современный уровень развития информационного моделирования зданий, без них технология BIM лишена всякого смысла.

BIM – это не только 3D. Это еще и масса дополнительной информации (атрибутов объектов), которая выходит далеко за рамки только геометрического восприятия этих объекта. Какой бы хорошей не была геометрическая модель и ее визуализация, у объектов должна быть еще количественная информация для анализа. Если кому-то удобнее, можно считать, что BIM – это 5D. И все же дело не в количестве D. BIM – это BIM. А только 3D – это не BIM.

BIM – это не обязательно 3D. Это еще и числовые характеристики, таблицы, спецификации, цены, календарные графики, электронные адреса и т.п. И если для решения проектных задач не требуется трехмерной модели сооружения, то 3D и не будет. Проще говоря, BIM – это ровно столько D, сколько надо, плюс числовые данные для анализа.

BIM – это параметрически заданные объекты. Поведение (свойства, геометрические размеры, расположение и т.п.) создаваемых объектов определяется наборами параметров и зависит от этих параметров.

BIM – это не набор 2D проекций, в совокупности описывающих проектируемое здание. Наоборот, все проекции получаются из информационной модели.

У BIM какое-либо изменение модели одновременно проявляется на всех видах. В противном случае создаются условия для возможных ошибок, которые трудно будет отследить.

BIM – это не завершенная (застывшая) модель. Информационная модель любого здания постоянно находится в развитии, по мере необходимости пополняясь все более новой информацией и корректируясь с учетом изменяющихся условий и нового понимания проектных или эксплуатационных задач. В подавляющем большинстве случаев это – «живая», развивающаяся модель. И при правильном понимании срок ее жизни полностью перекрывает жизненный цикл реального объекта.

BIM приносит пользу не только на больших объектах. На больших объектах много пользы. На маленьких абсолютная величина этой пользы меньше, но самих маленьких объектов обычно больше, так что опять пользы много. Информационная модель здания эффективна всегда.

BIM не заменяет человека. Более того, технология BIM не может существовать без человека и требует от него большего профессионализма, лучшего, комплексного понимания созидательного процесса проектирования здания и большей ответственности в работе. Но BIM делает работу человека более эффективной.

BIM не работает автоматически. Собирать информацию (либо руководить процессом сбора информации) по тем или иным проблемам все равно придется проектировщику. Но технология BIM существенно автоматизирует и поэтому облегчает процесс сбора, обработки, систематизации, хранения и использования такой информации. Как и весь процесс проектирования здания.

BIM не требует от человека «тупой набивки данных». Создание информационной модели осуществляется по обычной и понятной для проектировщика логике построения здания, где главную роль играют его квалификация и интеллект. А само построение модели осуществляется в основном традиционными для проектирования графическими средствами, в том числе и в интерактивном режиме.

Что, в прочем, совершенно не отвергает возможности ввода каких-то (например, текстовых) данных с клавиатуры.

BIM не делает ненужной «старую гвардию» специалистов. Конечно, любая гвардия рано или поздно становится «старой». Но опыт и профессиональное мастерство нужны в любом деле, особенно при проектировании в технологии информационного моделирования зданий, а они обычно приходят с годами. Другое дело, что прежним специалистам (всем, а не только «старым») придется приложить определенные усилия (кому-то даже немалые) при освоении новых инструментов и переходе на новую технологию. Но практика показывает, что это все – из области реального.

Освоение BIM не является делом избранных и не требует большого времени. Если точнее, времени на освоение BIM требуется ровно столько же, сколько уходит на профессиональное освоение любой другой технологии – «период первоначального обучения плюс вся жизнь».

 

By admin

Related Post